Boundary regularity of suitable weak solution for the Navier–Stokes equations
نویسندگان
چکیده
منابع مشابه
Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations
We present some new regularity criteria for suitable weak solutions of magnetohydrodynamic equations near boundary in dimension three. We prove that suitable weak solutions are Hölder continuous near boundary provided that either the scaled L x,t-norm of the velocity with 3/p+ 2/q ≤ 2, 2 < q <∞, or the scaled L x,t-norm of the vorticity with 3/p+ 2/q ≤ 3, 2 < q <∞ are sufficiently small near th...
متن کاملM ay 2 00 5 Regularity criteria for suitable weak solutions of the Navier - Stokes equations near the boundary
We present some new regularity criteria for “suitable weak solutions” of the Navier-Stokes equations near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to the boundary provided that the scaled mixed norm L x,t with 3/p + 2/q ≤ 2, 2 < q ≤ ∞, (p, q) 6= (3/2,∞), is small near the boundary. Our methods yield new results in the interior case as well....
متن کاملInterior Regularity Criteria for Suitable Weak Solutions of the Navier-Stokes Equations
We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point z if either the scaled L p,q x,t -norm of the velocity with 3/p + 2/q ≤ 2, 1 ≤ q ≤ ∞, or the L p,q x,t -norm of the vorticity with 3/p + 2/q ≤ 3, 1 ≤ q < ∞, or the L p,q x,t -norm of the gradient of the vorticity with 3/p + 2/q ≤ ...
متن کاملRegularity for Suitable Weak Solutions to the Navier-Stokes Equations in Critical Morrey Spaces
A class of sufficient conditions of local regularity for suitable weak solutions to the nonstationary three-dimensional Navier-Stokes equations are discussed. The corresponding results are formulated in terms of functionals which are invariant with respect to the Navier-Stokes equations scaling. The famous Caffarelli-Kohn-Nirenberg condition is contained in that class as a particular case. 1991...
متن کاملA study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2015
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2014.12.016